"The role of hydrogen in the process industries – implications on energy infrastructure"

Florian Ausfelder, DECHEMA e.V. 12.05.2022

Process4 Sustainability

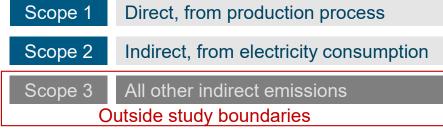
Cluster for climate-neutral process industries in Hesse

Supported by:

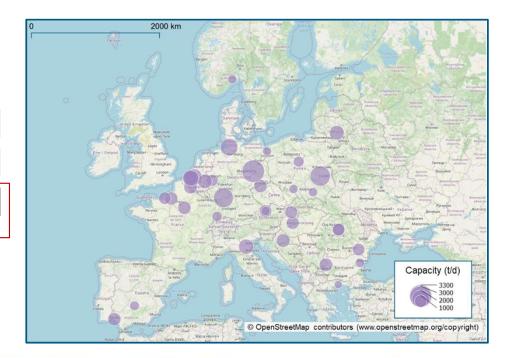
EUROPÄISCHE UNION: Investition in Ihre Zukunft Europäischer Fonds für regionale Entwickl

Perspective Europe 2030

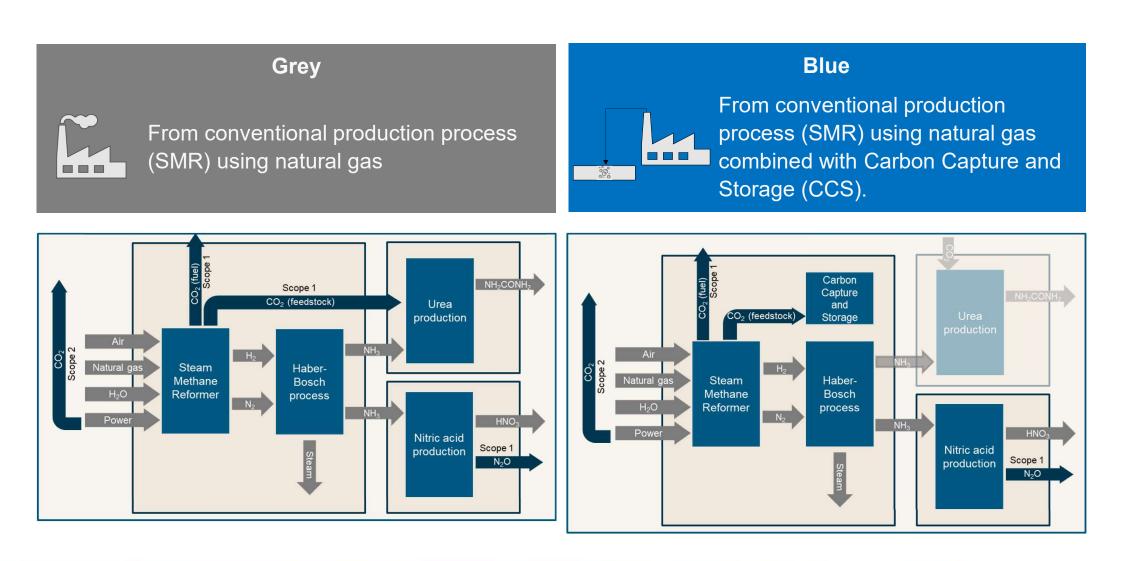
- NH₃ is globally the largest volume chemical (180 Mio. t/a)
- Responsible for 1-2% of global CO₂emissions
- Subsequent production of chemical fertilizers (urea, nitrates, ...)
- Chemical fertilizers feed half of the world's population
- In Europe based on natural gas (SMR)
- What is the CO₂-abatement potential of the European ammonia production up to 2030?
- Study commissioned by Fertilizers Europe



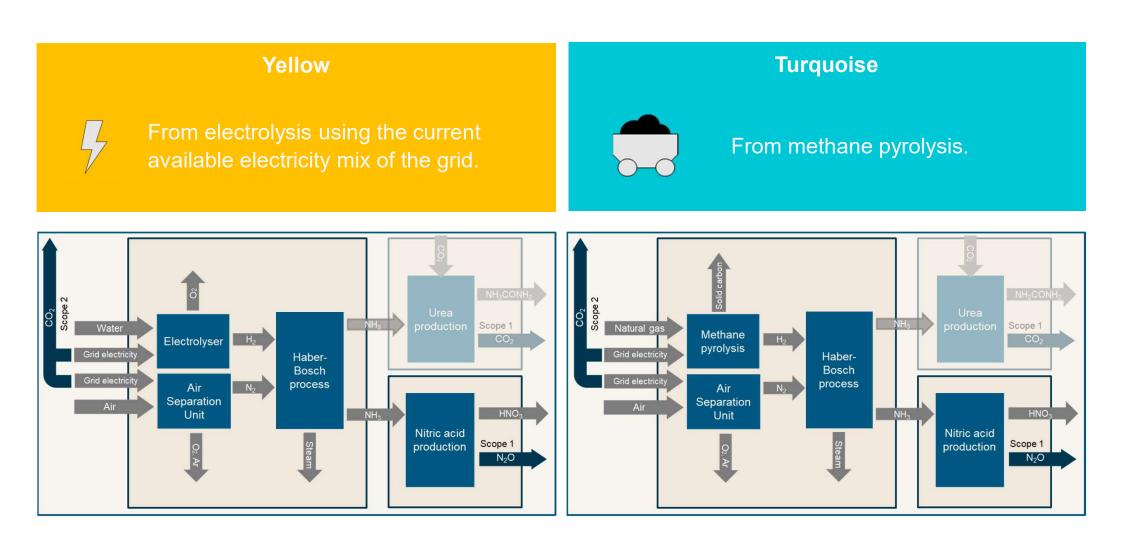
https://dechema.de/dechema_media/Downloads/Positionspapi ere/Studie+Ammoniak.pdf



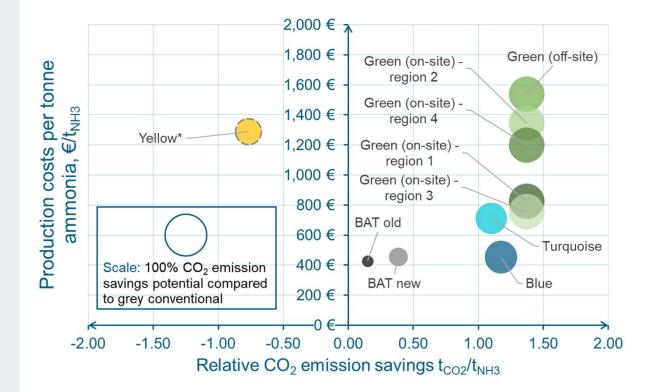
General aspects of the study


- Comparison of different technological options for ammonia production
- Timeframe: 2020 2050 ► Focus on 2030
- Boundaries: hydrogen and ammonia production processes
- Plant's characteristics: "Average European Ammonia Plant"
- Evaluated aspects:
 - Energy consumption
 - Specific production costs
 - CO₂ emissions and avoidance costs

- Abatement potential for two scenarios
- Regions: Southern, Northern, Western and central Europe

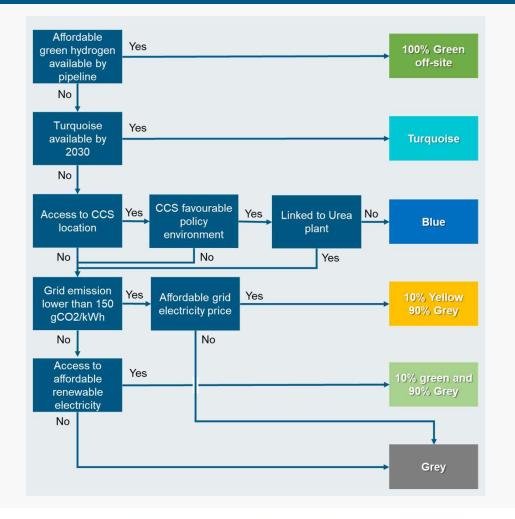

4 Industriepark Höchst, May, 12th 2022

Green From electrolysis using exclusively renewable electricity for its production. On-site Off-site Green electricity O2 Electrolyser Water NH₂CONH CO₂ Scope 2 Scope 1 Water H₂ (via Pipeline) Scope 1 H₂ Electrolyser Green electricit Haber-Haber-Bosch Bosch process Electricity process Air N_2 Air N₂ Separation Separation NH₃ HNO₃ NH₃ Unit Unit HNO₃ Nitric acid Nitric acid Steam Scope 1 Steam production Scope 1 production N₂O N₂O


Emissions

Energy consumption

Production costs


Saving potential

- Largest reduction potential is achieved with green ammonia (70%)
- Blue and turquoise are also good options (60% and 56% reduction potential) with lower production costs
- BAT old and new plants present 8% and 20% reduction potential
- Yellow > only in locations with low grid emission factors

General approach to calculations of abatement potential

Nitrate plants

Technology	Requirements	% Base case	% Best case
Blue	Access to CCS	22%	29%
Turquoise	Rapid technological development required	0%	3%
Yellow	Not considered for 2030	0%	0%
90% grey, 10% yellow	Low grid emission factor	28%	28%
Green	Low specific price of green hydrogen	0%	4%
90% grey, 10% green	Low specific price + availability of green electricity	37%	33%
Grey conventional	All remaining plants	13%	3%

Urea plants

Technology	Requirements	% Base case	% Best case
90% grey, 10% green	Low specific price + availability of green electricity	59%	81%
Grey conventional	All remaining plants	41%	19%

Total abatement potential – best case scenario

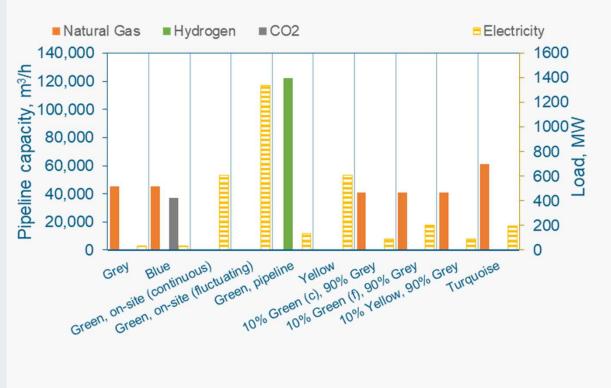
- Total production of 13.2 Mt_{NH3}/a
- Largest contribution of blue ammonia
- Application of 10% green brings benefits
- Yellow contribution depends on production site
- Turquoise contribution depends on availability
- Costs of green ammonia should be reduced

		4 4		
	ana	tement	notant	
TOLA	ava	LEINEIL	DOLEIIL	I G I

Base case scenario	14%	
Best case scenario	20%	

C DECHEMA

*applicable production capacity



Infrastructure

Values for an "average European ammonia plant" – Capacity of 500,000 t_{NH3}/y

Comparation of technology options with conventional process:

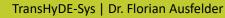
- Blue: CO₂ pipeline needed (0.8 times of NG pipeline)
- Green on-site and Yellow: electric power 18 to 39 times higher
- Green off-site: H₂ pipeline 2.7 times larger than pipeline for NG
- Turquoise: NG pipeline 1.3 times larger and electric power 6 times higher

TransHyDE – Transport options for green hydrogen TransHyDE-Sys: System analysis for green hydrogen transport options

Dr. Florian Ausfelder I Höchst I 12.05.2022

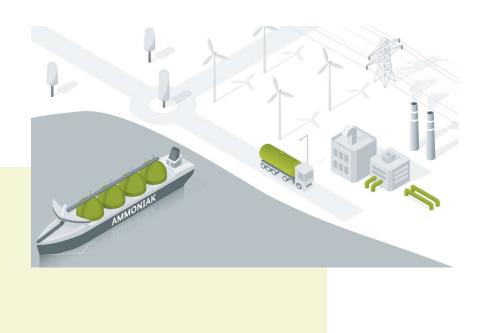
Hydrogen Republic Germany: "Leitprojekte" (04/21-03/25)

- H2Giga: Mass manufacturing technologies for electrolyzers
 - ¬ Funding: 480 Mio. €, 130 Partners
- H2Mare: Offshore water electrolysis and PtXprocesses
 - ¬ Funding: 100 Mio. €, 29 Partners
- TransHyDE: Transport options for green hydrogen
 - ¬ Funding: 140 Mio. €, 85 Partners
- Fundamental research projects
 - Currently 16 projects and ongoing


Introduction

- Green hydrogen is a universal and versatile energy carrier
- It is an essential component in the energy transition towards greenhouse gas neutrality
- It will be applied in various sectors, differing widely in volumes and specifications
- The "Leitprojekt" TransHyDE develops and evaluates various technology options for hydrogen transport

Bundesministerium


und Forschung

Project Structure: Demonstration Projects

- A) MUKRAN New spherical H₂-storage vessel
- \neg (B) GET-H₂ Experimental H₂-Pipeline
- (C) CAMPFIRE Ammonia as H₂ transport option
- (D) HELGOLAND Logistics and supply chain for LOHC (liquid organic hydrogen carrier)

Project Structure: Research Projects

RESEARCH PROJECT (1) SYSTEM ANALYSIS

- Research Project (2) Safe and secure
 Infrastructure: Materials testing, sensors, safety
 and security
- ¬ Research Project (3) H₂-Transport with ammonia
- Research Project (4) Transport and use of liquid hydrogen
- Research Project (5) Standardisation, technical norms and certification

TransHyDE-Sys

System Analysis of transport option for green hydrogen

Shutterstock: 94931578

- Spatial and temporal development of ttransport infrastructure for hydrogen
- Stakeholder perspective (energy-intensive industries)
- System perspective (Optimization of macro-economic cost)
- Let us compare methodologies (stakeholder vs. system perspective)
- Consistent system boundaries and parameters for ecological evaluation of transport technologies
- Communication and stakeholder integration
- Roadmapping: reflecting technological developments within the overall energy system

Industriepark Höchst

TransHyDE-Sys: System Analysis

- Coordinators:
 - Florian Ausfelder (DECHEMA)
 - Mario Ragwitz (FhG IEG)
- 22 Funded Partners:
 - 7 Industry sector technical associations
 - 8 Research institutes
 - ¬ 5 Universities
 - 2 Companies
- 9 Associated Partners
- ¬ Funding: 17 Mio. €

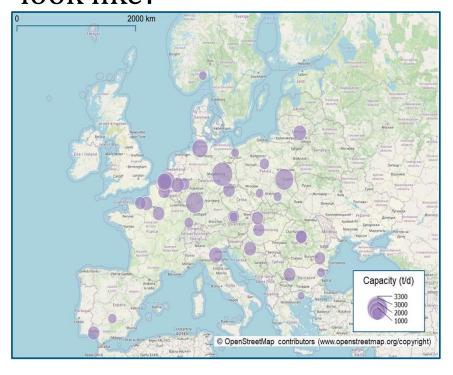
AP 2/3 Development of infrastructure

AP 4 Let us compare methodologies

Spatial and temporal development of ttransport infrastructure for hydrogen

AP 2 Stakeholder perspective

 Development of hydrogen infrastructure and interaction with existing and future energy and feedstock infrastructures within the transformation of heavy industry


AP 3 System perspective

- Minimal macro-economic cost for optimal hydrogen infrastructure development to supply green hydrogen
- AP 4 Let us compare methodologies

18

Leitprojekt **TransHyDE**

What will the results look like?

Quelle:

Perspective Europe 2030 - Technology options for CO₂- emission reduction of hydrogen feedstock in ammonia production

Industriepark Höchst

GEFÖRDERT VOM

für Bildung und Forschung

Bundesministerium

Thank you for your attention

Florian Ausfelder E-Mail: <u>florian.ausfelder@dechema.de</u>

